A microbial organism pulls electricity from water in the air.
Category: biological – Page 105
Artificial Intelligence is outgrowing the current pace of Hardware Improvements and requires a new kind of technology to keep up and enable future AI Applications. Scientists seem to have found that creating artificial brains out of nanowire can mimic the human brain and power the biggest and smartest AI models ever made at relatively low energy consumption.
Today’s deep neural networks already mimic one aspect of the brain: its highly interconnected network of neurons. But artificial neurons behave very differently than biological ones, as they only carry out computations. In the brain, neurons are also able to remember their previous activity, which then influences their future behavior. This in-built memory is a crucial aspect of how the brain processes information, and a major strand in neuromorphic engineering focuses on trying to recreate this functionality. This has resulted in a wide range of designs for so-called “memristors”: electrical components whose response depends on the previous signals they have been exposed to.
–
If you enjoyed this video, please consider rating this video and subscribing to our channel for more frequent uploads. Thank you! smile
–
TIMESTAMPS:
00:00 A New Paradigm in AI Computing.
01:36 How this Artificial Brain works.
04:14 What this new Technology will enable.
06:38 Last Words.
–
#brains #ai #nanowire
Exclusive interview for ageless partners®: augmented fasting; reverse engineering immortality.
I am so happy and intellectually fulfilled to share the following interview I had with Jason C. Mercurio, MFE about Aging and the conclusions I’ve reached after 12 years of intensive research.
Every single person reading this is suffering from Aging.
Also the tool Aging exacts in terms of human suffering is indescribable.
The fundamental rotation of micro and nano-objects is crucial for the functionality of micro and nanorobotics, as well as three-dimensional imaging and lab-on-a-chip systems. These optical rotation methods can function fuel-free and remotely, and are therefore better suited for experiments, while current methods require laser beams with designed intensity profiles or objects with sophisticated shapes. These requirements are challenging for simpler optical setups with light-driven rotation of a variety of objects, including biological cells.
In a new report now published in Science Advances, Hongru Ding and a research team in engineering and materials science at the University of Texas at Austin, U.S., developed a universal approach for the out-of-plane rotation of various objects based on an arbitrary low-power laser beam. The scientists positioned the laser source away from the objects to reduce optical damage from direct illumination and combined the rotation mechanism via optothermal coupling with rigorous experiments, coupled to multiscale simulations. The general applicability and biocompatibility of the universal light-driven rotation platform is instrumental for a range of engineering and scientific applications.
Join Professor Michelle Simmons to find out how scientists are delivering Richard Feynman’s dream of designing materials at the atomic limit for quantum machines. 🔔Subscribe to our channel for exciting science videos and live events, many hosted by Brian Cox, our Professor for Public Engagement: https://bit.ly/3fQIFXB
#Physics #Quantum #RichardFeynman.
Sixty years ago, the great American physicist Richard Feynman delivered a famous lecture in which he urged experimentalists to push for the creation of new materials with features designed at the atomic limit. He called this the “final question”: whether ultimately “we can arrange the atoms the way we want: the very atoms all the way down!”
Professor Simmons will explain how to manufacture materials and devices whose properties are determined by the placement of individual atoms, and will highlight the creative explosion in new devices that has followed and the many new insights into the quantum world that this revolution has made possible.
Centimeter-scale objects in liquid can be manipulated using the mutual attraction of two arrays of air bubbles in the presence of sound waves.
Assembling small components into structures is a fiddly business often encountered in manufacturing, robotics, and bioengineering. Some existing approaches use magnetic, electrical, or optical forces to move and position objects without physical contact. Now a team has shown that acoustic waves can create attractive forces between centimeter-scale objects in water, enabling one such object to be accurately positioned above another [1]. The scheme uses arrays of tiny, vibrating air bubbles that provide the attractive force. This acoustic method requires only simple equipment and could provide a cheap, versatile, and gentle alternative technique for object manipulation.
Researchers are developing techniques that use acoustic waves to position objects such as colloidal particles or biological cells. Attractive forces are produced by the scattering of sound waves from the objects being manipulated. One limitation of this approach, however, is that positioning is more accurate with waves of higher frequency (and thus smaller wavelength), but higher frequencies are also more strongly absorbed and attenuated by many materials.
Cortical Labs takes neurons from mice and put them on chips, then teaches them how to play ping pong.
Can you make smarter AI systems by combining biological neurons with silicon chips? In this episode of The AI Show with John Koetsier, we’re going to chat with Hon Weng Chong, CEO and co-founder of Cortical Labs and Andy Kitchen, the company’s CTO, about biological AI: mixing real brain cells with silicon computer chips.
Mobile robots are now being introduced into a wide variety of real-world settings, including public spaces, home environments, health care facilities and offices. Many of these robots are specifically designed to interact and collaborate with humans, helping them to complete hands-on physical tasks.
To improve the performance of mobile robots on interactive and manual tasks, roboticists will need to ensure that they can effectively sense stimuli in their environment. In recent years, many engineers and material scientists have thus been trying to develop systems that can artificially replicate biological sensory processes.
Researchers at Scuola Superiore Sant’Anna, Ca’ Foscari University of Venice, Sapienza University of Rome and other institutes in Italy have recently used an artificial skin and a deep learning technique that could be used to improve the tactile capabilities of both existing and newly developed robots to replicate the function of the so-called Ruffini receptors. Their approach, introduced in a paper published in Nature Machine Intelligence, replicates the function of a class of cells located on the human superficial dermis (i.e., subcutaneous skin tissue), known as Ruffini receptors.
The Secret Cleaning Power of Bacteria
Posted in biological, food
Circa 2021
Microbes are really good at eating a range of substances, so humans are putting them to work cleaning up our messes — and our art.
Synthetic biology is the engineering and redesign of biological systems and could have a range of applications in modern day life.