CRISPR gene editing leads to improvements in vision for people with inherited blindness, a recent clinical trial shows.
“Engineering the brain”. There was no intelligent design, and as a result, body organs do not resemble machines. Once we start building machines like body organs — with utility functions, self-organization and cells as building blocks, we can mesh engineering and evolutionary principles to arrive at better organisms.
Each CRISPR system has two parts: a strand of RNA that matches the target and a protein that makes the edit. The most commonly used protein for gene editing is called “Cas9,” but scientists have discovered CRISPRs with other proteins that give them unique capabilities — while CRISPR-Cas9 slices through DNA, for example, CRISPR-Cas13 targets RNA.
Our current CRISPR gene editors are far from perfect, though. They can make edits in the wrong places or edit too few cells to make a difference, so researchers are constantly on the hunt for new CRISPR systems.
AI-designed CRISPR: Up until now, that hunt has been limited to the CRISPRs that have been discovered in nature, but Profluent has used the same types of AI models that allow ChatGPT to generate language to develop an AI platform that can generate millions of CRISPR-like proteins.
A new study has been led by Prof. Xing-Hua Xia (State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University). While analyzing the infrared photoinduced force response of quartz, Dr. Jian Li observed a unique spectral response that is different from the far field infrared absorption spectrum.
A team of chemists and bioengineers at Rice University and the University of Houston have achieved a significant milestone in their work to create a biomaterial that can be used to grow biological tissues outside the human body.
The results of a metagenomic study from the University of Trento suggest that the CRISPR toolbox will need to make room for another CRISPR enzyme. The disruption should be minimal because the newly identified enzyme is unusually compact. It consists of just over 1,000 amino acids. And yet it is also strongly active and highly precise. The hope is that it can be packaged with guide RNA within the tight quarters afforded by adeno-associated virus (AAV) vectors, and thereby expand the use of in vivo gene editing in therapeutic applications.
The study was led by Anna Cereseto, PhD, and Nicola Segata, PhD, of the department of cellular, computational, and integrative biology. Cereseto leads a laboratory that develops advanced genome editing technologies and their application in the medical sector. Segata is the head of a laboratory of metagenomics, where he studies the variety and characteristics of the human microbiome and its role in health. Their collaboration has led to the identification, in a bacterium of the intestine, of new CRISPR-Cas9 molecules that could have a clinical potential to treat genetic diseases.
Detailed findings from the study recently appeared in Nature Communications, in an article titled, “CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing.”
Poirier M, Smith OE, Therrien J, et al. Resiliency of equid H19 imprint to somatic cell reprogramming by oocyte nuclear transfer and genetically induced pluripotency†. Biol Reprod. 2019;102:211–9.
Year 2019 face_with_colon_three
Tan, Y., Landford, W.N., Garza, M. et al. Sci Rep 9, 16,368 (2019). https://doi.org/10.1038/s41598-019-51794-6