Blog

Archive for the ‘bioengineering’ category: Page 198

Aug 25, 2016

The Man Biohacking Encryption From His Garage

Posted by in categories: bioengineering, cyborgs, encryption, transhumanism

A pioneer in the biohacking scene since the mid-2000s, Amal Graafstra’s been experimenting with RFID implants for more than a decade. Now Graafstra is developing implants that go beyond RFIDs.

In episode 2 of Humans+, Motherboard travels to his company Dangerous Things’ garage headquarters to get an early look at UKI, a prototype implant focused on encryption that’s expected to be released in 2017. Amal hopes that this technology will bring us one step closer to merging our physical and digital identities, but how will society react to having these technologies implanted beneath our skin?

Continue reading “The Man Biohacking Encryption From His Garage” »

Aug 24, 2016

Why De Beers is spending on diamond technology

Posted by in categories: bioengineering, biotech/medical

Fraud detection technology is in high demand and growing thanks to areas such as India. However, there is a huge growing demand for synthetic diamonds in their use in technology, medical, synthetic biology as well.


It takes billions of years to produce a natural diamond, but a laboratory can grow one in days and to the untrained eye they look the same. In an attempt to protect its reputation, De Beers has developed technology that can spot the difference. Ivor Bennett reports.

When dealing with diamonds, one can never be too sure. That’s why at De Beers, it’s not just humans checking the gems anymore, but machines too. SOUNDBITE (English) JONATHAN KENDALL, PRESIDENT, INTERNATIONAL INSTITUTE OF DIAMOND GRADING AND RESEARCH, SAYING: “A synthetic is a man-made product. It’s not a gem, it’s not a beautiful product. It’s not about love and affection and emotion. And it’s not unique and it’s not mysterious. And that’s everything that a diamond is.” It takes about 3 billion years to make a natural diamond. but just three weeks for a synthetic one. To the naked eye though, they look the same. So how do you tell the difference? SOUNDBITE (English) IVOR BENNETT, REUTERS REPORTER, SAYING: “It’s all to do with how the stone looks under UV light. A natural diamond for example will appear dark blue in colour with a regular structure. But if i click on the synthetic one, you can see it’s much lighter with these block-like structures, which is down to its irregular growth.

Continue reading “Why De Beers is spending on diamond technology” »

Aug 24, 2016

Gene editing will challenge ethics at Biological Weapons Convention

Posted by in categories: bioengineering, biotech/medical, ethics, genetics

Anyone attending the Bioweapons Convention in December?


He signatory nations of the Biological Weapons Convention (BWC) will meet …to discuss the state of bioweapons globally…he world has radically changed s.

Read more

Aug 24, 2016

World not prepared for biological attacks, new technology threats: Ban Ki-moon

Posted by in categories: 3D printing, bioengineering, biological, government, robotics/AI, security, space

CISO & CSO at many companies are certainly going to have their work cut out for them in the long-term future as more and more new tech such as 3D Printing, Synthetic Bio, etc. are adopted into companies; really brings a new level of security concerns not only in government; but also the private sector.


He pointed out that while there were international organisations to prevent the spread of nuclear and chemical weapons, there was no such agency to deal with biological weapons.

Speaking at the Council debate on weapons of mass destruction (WMD), he sought to expand its definition beyond nuclear, chemical and biological to embrace the threats arising from 21st century science, technology and globalisation.

Continue reading “World not prepared for biological attacks, new technology threats: Ban Ki-moon” »

Aug 24, 2016

Algae as vessels for synthetic biology

Posted by in categories: bioengineering, biological

Nice.


Algae (a term used to group many photosynthetic organisms into a rather heterologous mash-up) do not have a kind place in the public imagination. Take for example the following passage from Stephen King’s Pet Semetary:

“Dead fields under a November sky, scattered rose petals brown and turning up at the edges, empty pools scummed with algae, rot, decomposition, dust…”

Continue reading “Algae as vessels for synthetic biology” »

Aug 24, 2016

Steve Fuller’s Review of Homo Deus: A Brief History of Tomorrow by Yuval Noah Harari

Posted by in categories: big data, bioengineering, biological, bionic, cyborgs, disruptive technology, energy, evolution, existential risks, futurism, homo sapiens, innovation, moore's law, neuroscience, philosophy, policy, posthumanism, robotics/AI, science, singularity, theory, transhumanism

My sociology of knowledge students read Yuval Harari’s bestselling first book, Sapiens, to think about the right frame of reference for understanding the overall trajectory of the human condition. Homo Deus follows the example of Sapiens, using contemporary events to launch into what nowadays is called ‘big history’ but has been also called ‘deep history’ and ‘long history’. Whatever you call it, the orientation sees the human condition as subject to multiple overlapping rhythms of change which generate the sorts of ‘events’ that are the stuff of history lessons. But Harari’s history is nothing like the version you half remember from school.

In school historical events were explained in terms more or less recognizable to the agents involved. In contrast, Harari reaches for accounts that scientifically update the idea of ‘perennial philosophy’. Aldous Huxley popularized this phrase in his quest to seek common patterns of thought in the great world religions which could be leveraged as a global ethic in the aftermath of the Second World War. Harari similarly leverages bits of genetics, ecology, neuroscience and cognitive science to advance a broadly evolutionary narrative. But unlike Darwin’s version, Harari’s points towards the incipient apotheosis of our species; hence, the book’s title.

This invariably means that events are treated as symptoms if not omens of the shape of things to come. Harari’s central thesis is that whereas in the past we cowered in the face of impersonal natural forces beyond our control, nowadays our biggest enemy is the one that faces us in the mirror, which may or may not be able within our control. Thus, the sort of deity into which we are evolving is one whose superhuman powers may well result in self-destruction. Harari’s attitude towards this prospect is one of slightly awestruck bemusement.

Here Harari equivocates where his predecessors dared to distinguish. Writing with the bracing clarity afforded by the Existentialist horizons of the Cold War, cybernetics founder Norbert Wiener declared that humanity’s survival depends on knowing whether what we don’t know is actually trying to hurt us. If so, then any apparent advance in knowledge will always be illusory. As for Harari, he does not seem to see humanity in some never-ending diabolical chess match against an implacable foe, as in The Seventh Seal. Instead he takes refuge in the so-called law of unintended consequences. So while the shape of our ignorance does indeed shift as our knowledge advances, it does so in ways that keep Harari at a comfortable distance from passing judgement on our long term prognosis.

Continue reading “Steve Fuller's Review of Homo Deus: A Brief History of Tomorrow by Yuval Noah Harari” »

Aug 23, 2016

U of California: Nano submarines could change healthcare, says nanoengineer professor

Posted by in categories: bioengineering, biotech/medical, entertainment, nanotechnology

Rebirth of the 1960s cult classic “Fantastic Voyage”; however, this time its not a movie.


When asked what exactly a “nano submarine” was, University of California San Diego chair of nanoengineering professor Joseph Wang described it as like something taken from the 1966 film Fantastic Voyage, where medical personnel board a submarine were shrunk to microscopic size to travel through the bloodstream of a wounded diplomat and save his life.

Professor Wang said his team was getting closer to the goal of using nano submarines in a variety of ways, minus the shrunken humans and sabotage of the 1966 film.

Continue reading “U of California: Nano submarines could change healthcare, says nanoengineer professor” »

Aug 23, 2016

Accessible Synthetic Biology Raises New Concerns for DIY Biological Warfare

Posted by in categories: 3D printing, bioengineering, biotech/medical, genetics, habitats, military

Good; glad they are hearing us. Because it is a huge issue for sure especially with some of the things that I seen some of the researchers proposing to use CRISPR, 3D Printers, etc. to create some bizarre creatures. Example, in March to scientists in the UK wanted to use CRISPR to create a dragon; personally I didn’t expect it to be successful. However, the scientists didn’t consider the fallout to the public if they had actually succeeded.


For a few hundred dollars, anyone can start doing genetic editing in the comfort of their own home.

Read more

Aug 22, 2016

Identifying the Microbial Culprits Initiating Oceanic Nitrogen Loss

Posted by in categories: bioengineering, biological

Oxygen minimum zones (OMZs) extend over about 8 percent of the oceanic surface area, but account for up to 50 percent of the total loss of bioavailable nitrogen and thus play an important role in regulating the ocean’s productivity by substantially impacting the nitrogen cycle. By sequencing single cells and metagenomes from OMZs, researchers identified bacteria of the SAR11 clade as being abundant in these areas, although no previously known anaerobic metabolism had been described for this group. Detailed sequence analysis of SAR11 single cells, followed by functional characterization experiments, revealed the presence of functional nitrate reductase pathways as a key adaptation to oxygen-poor, or anoxic, environments. These results link SAR11, the world’s most abundant organismal group, to oceanic nitrogen loss.

The Impact

Microbes play key roles in maintaining the planet’s biogeochemical cycles, and while the role of SAR11 bacteria in the marine carbon cycle has been well documented, its important role in regulating nitrogen bioavailability was hitherto unknown. In partnering with a national user facility, scientists had access to state-of-the-art single-cell sorting and synthetic biology capabilities at the DOE JGI, enabling them to identify and functionally characterize the role of SAR11 in oxygen minimum zones in the ocean.

Continue reading “Identifying the Microbial Culprits Initiating Oceanic Nitrogen Loss” »

Aug 22, 2016

Changing the Nature of Nature

Posted by in categories: bioengineering, biological, genetics

Alterar a natureza da natureza.

Inovadores estão trabalhando em direção a um mundo no qual a matéria viva é totalmente programável por meio da biologia sintética onde as pessoas já não são apenas consumidores de tecnologia, mas os cidadãos de um mundo tecnológico.

Continue reading “Changing the Nature of Nature” »