Toggle light / dark theme

Professor Kwang-Hyun Cho’s research team of the Department of Bio and Brain Engineering at KAIST has captured the critical transition phenomenon at the moment when normal cells change into cancer cells and analyzed it to discover a molecular switch hidden in the genetic network that can revert cancer cells back into normal cells.

The team’s findings are published in the journal Advanced Science.

A critical transition is a phenomenon in which a sudden change in state occurs at a specific point in time, like water changing into steam at 100℃. This critical transition phenomenon also occurs in the process in which change into at a specific point in time due to the accumulation of genetic and .

Recent advances in the fields of human-infrastructure interaction, electronic engineering, robotics and artificial intelligence (AI) have opened new possibilities for the development of assistive and medical technologies. These include devices that can assist individuals with both physical and cognitive disabilities, supporting them throughout their daily activities.

Researchers at the University of Michigan recently developed CoNav, a smart controlled via a Robot Operating System (ROS) based framework. The new wheelchair, presented in a paper on the arXiv preprint server, could help to improve the quality of life of individuals who are temporarily or permanently unable to walk, allowing them to move in their surroundings more intuitively and autonomously.

“The inspiration for this work stems from a broader challenge in assistive mobility for people with disabilities (PWD),” Vineet Kamat, senior author of the paper, told Tech Xplore.

New genetic research from the University of Florida may help make key crops such as potatoes, tomatoes, and peppers more resistant to disease and environmentally resilient as well as increase their nutritional value.

“Our research illustrates the remarkable potential of combining deep taxonomic expertise with cutting-edge biotechnology,” author Fabio Pasin told the Chinese Academy of Sciences, via Phys.org. “By focusing on the Solanaceae family, we can enhance not only widely recognized crops but also bring underutilized species into the agricultural mainstream, improving food security and enriching nutritional diversity across the globe.”

Researchers used recombinant virus technologies to give new breeds of plants particular traits. This method is very specific about promoting certain traits in new breeds. Scary as it might sound to use an engineered virus to change the DNA of our food, it’s a way of improving biodiversity in agriculture when farming has become more and more homogeneous and thus vulnerable.

Tissue engineering utilizes 3D printing and bioink to grow human cells on scaffolds, creating replacements for damaged tissues like skin, cartilage, and even organs. A team of researchers led by Professor Insup Noh from Seoul National University of Science and Technology, Republic of Korea, has developed a bioink using nanocellulose derived from Kombucha SCOBY (Symbiotic Culture of Bacteria and Yeast) as the scaffold material.

The biomaterial offers a sustainable alternative to conventional options, and it can be loaded onto a hand-held “Biowork” biopen, also developed by the same team. The digital biopen allows the precise application of bioink to damaged defected areas, such as irregular cartilage and large skin wounds, paving the way for more personalized and effective in vivo tissue repair, eliminating the need for in vitro processes.

This paper was published in the International Journal of Biological Macromolecules on 1 December 2024.

Every time a shuttle docks with the International Space Station (ISS), a delicate dance unfolds between the shuttle’s docking system and its counterpart on the station. Thanks to international standards, these mechanisms are universally compatible, ensuring astronauts and cargo can safely and seamlessly enter the station.

A similar challenge arises at the microscopic level when (LNPs)—the revolutionary drug vehicles behind the COVID-19 vaccines—attempt to deliver mRNA to cells. Optimizing the design and delivery of LNPs can greatly enhance their ability to deliver mRNA successfully, empowering cells with the disease-fighting instructions needed to transform medicine.

This week, The Circuit explores the cutting-edge technology of artificial wombs! Discover how engineers and scientists are working to save premature babies and even endangered species.
In this episode, we look at:

• The development of artificial womb technology for human preemie babies.
• How the Okinawa Churaumi Aquarium is using artificial wombs to save.
shark embryos.
• How bioengineers were able to grow a premature lamb in a biobag.

Artificial wombs represent a fascinating intersection of biology and engineering.

What are YOUR thoughts on the artificial womb? Amazing or frightening?

#ArtificialWomb #Preemies #SharkConservation #Biology #Engineering #NeonatalCare #MedTech #TheCircuit #Pregnancy #Doctors #Hospital #Healthcare

Dive into the captivating realm of Biopunk Science Fiction in our latest video! 🌱 Discover what Biopunk is, from genetic engineering to human augmentation, and explore the ethical dilemmas it presents in our modern world. We’ll discuss its evolution through literature and film, touching on iconic works like \.

Biopunk androids replicants.


What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology and genetic engineering look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Other topic include: bioengineered food and farming, bio-printing in space, new age living bioarchitecture (eco concrete inspired by coral reefs), bioengineered bioluminescence, cyberpunks and biopunks who experiment underground — creating new age food and pets, the future of bionics, corporations owning bionic limbs, the multi-trillion dollar industry of bio-robots, and bioengineered humans with super powers (Neo-Humans).

As well as the future of biomedical engineering, biochemistry, and biodiversity.

Australian researchers have successfully introduced an improved version of Cas12a gene-editing enzyme in mice. Their work establishes a next-generation gene-editing tool that enhances genetic manipulation for cancer and medical research in a preclinical model.

The study, “Advancing the genetic engineering toolbox by combining AsCas12a knock-in mice with ultra-compact screening,” was published in Nature Communications.

“This is the first time Cas12a has been used in preclinical models, which will greatly advance our genome engineering capabilities,” said co-author Eddie La Marca, PhD, a postdoctoral researcher at the Olivia Newton-John Cancer Research Institute (ONJCRI) in Australia.