Blog

Archive for the ‘3D printing’ category: Page 30

Dec 11, 2021

Forget 3D-printing, molding is where it’s at

Posted by in category: 3D printing

Dec 9, 2021

3D printing the highest skyscraper? 600km tall structures may be feasible

Posted by in categories: 3D printing, military

Circa 2013 😳!


What would you do with a 600km high structure? That would be hundreds of times higher than the highest ever built so far. I think it is feasible. Here I will suggest super-light, super-strong building materials that can substitute for steel and concrete that can be grown up from the base using feasibly high pressures.

I recently proposed a biomimetic technique for printing graphene filaments to make carbon fur (- in this case, for my fictional carbon-obsessed super-heroine Carbon Girl. I am using the Carbon Trio as a nice fun way to illustrate a lot of genuine carbon-related concepts for both civil and military uses, since they could make a good story at some point. Don’t be put off by the fictional setting, the actual concepts are intended to be entirely feasible. Real science makes a better foundation for good science fiction. Anyway, this is the article on how to make carbon filaments, self-organised into fur, and hence her fur coat:)

Continue reading “3D printing the highest skyscraper? 600km tall structures may be feasible” »

Dec 9, 2021

3D Printed Architecture that prove the endless possibilities of this innovative technique!

Posted by in categories: 3D printing, habitats, space, sustainability

Nowadays almost everything is being 3D printed, so why should architecture be an exception? Many architectural firms are adopting 3D printing as their preferred technique to build structures. And 3D printed architecture is slowly but surely gaining a lot of popularity and momentum. This emerging trend is paving a path for itself in modern architecture. And I mean, no wonder, it has a ton of benefits! It’s a simple, efficient, and innovative technique that lowers the risks of errors, and also manages to save on time. 3D printing eradicates a lot of tedious steps during the construction process and simplifies it. It is being used to build homes, habitats on Mars, and even floating islands! The potential and possibilities of 3D printing in architecture are endless and mind-blowing. We’ve curated a collection of 3D-printed architectural structures that are our absolute favorites – from a 3D printed sustainable office pod to a 3D printed housing community for the homeless, every single one of these designs unleashes the magic and potential of 3D printing!

Nov 30, 2021

Scientists 3D-Print Programmable Living Structures With New Microbial Ink

Posted by in categories: 3D printing, biotech/medical, genetics

There’s also been a lot of interest in creating more versatile “living inks” made up of bacteria, which can be genetically engineered to do everything from deliver drugs to clean up pollutants. But so far, approaches have relied on mixing microbes with polymers that help provide the ink with some structural integrity.

Now, researchers have developed a new living ink that more closely lives up to the name by replacing the polymers with a protein made by genetically engineered E. coli bacteria. The researchers say this opens the door to seeding large-scale, living structures from nothing more than a simple cell culture.

The key to the breakthrough was to repurpose the proteins that E. coli cells secrete to stick together and form hard-to-shift biofilms. In a paper in Nature Communications, the researchers describe how they genetically engineered bacteria to produce two different versions of this protein known as a “knob” and a “hole,” which then lock together to form a robust cross-linked mesh.

Nov 18, 2021

Orten introduces electric truck with 3D-printed solid-state batteries

Posted by in categories: 3D printing, energy, transportation

Vehicle retrofit company Orten E-Truck has developed an electric truck that incorporates Blackstone’s solid-state batteries. Blackstone is 3D printing the storage cells.

Nov 16, 2021

Polymer discovery gives 3D-printed sand super strength

Posted by in category: 3D printing

Researchers at the Department of Energy’s Oak Ridge National Laboratory designed a novel polymer to bind and strengthen silica sand for binder jet additive manufacturing, a 3D-printing method used by industries for prototyping and part production.

The printable polymer enables structures with intricate geometries and exceptional strength—and is also water soluble.

The study, published in Nature Communications, demonstrates a 3D-printed sand bridge that at 6.5 centimeters can hold 300 times its own weight, a feat analogous to 12 Empire State Buildings sitting on the Brooklyn Bridge.

Nov 10, 2021

3D printing nanoresonators: Towards miniaturized and multifunctional sensors

Posted by in categories: 3D printing, mobile phones, nanotechnology

Micro-electro-mechanical devices (MEMS) are based on the integration of mechanical and electrical components on a micrometer scale. We all use them continuously in our everyday life: For example, in our mobile phones there are at least a dozen MEMS that regulate different activities ranging from motion, position, and inclination monitoring of the phone; active filters for the different transmission bands, and the microphone itself.

Even more interesting is the extreme nanoscale miniaturization of these devices (NEMS), because it offers the possibility of creating inertial, mass and with such sensitivity that they can interact with single .

However, the diffusion of NEMS sensors is still limited by the high manufacturing cost of traditional silicon-based technologies. Conversely, new technologies such as 3D printing have shown that similar structures can be created at low cost and with interesting intrinsic functionalities, but to date the performance as mass sensors are poor.

Nov 5, 2021

Plans Of A Technocratic Elite: ‘The Great Reset’ Is Not A Conspiracy Theory

Posted by in categories: 3D printing, biotech/medical, genetics, information science, internet, nanotechnology, quantum physics, Ray Kurzweil, robotics/AI, singularity, transhumanism

According to Klaus Schwab, the founder and executive chair of the World Economic Forum (WEF), the 4-IR follows the first, second, and third Industrial Revolutions—the mechanical, electrical, and digital, respectively. The 4-IR builds on the digital revolution, but Schwab sees the 4-IR as an exponential takeoff and convergence of existing and emerging fields, including Big Data; artificial intelligence; machine learning; quantum computing; and genetics, nanotechnology, and robotics. The consequence is the merging of the physical, digital, and biological worlds. The blurring of these categories ultimately challenges the very ontologies by which we understand ourselves and the world, including “what it means to be human.”

The specific applications that make up the 4-R are too numerous and sundry to treat in full, but they include a ubiquitous internet, the internet of things, the internet of bodies, autonomous vehicles, smart cities, 3D printing, nanotechnology, biotechnology, materials science, energy storage, and more.

While Schwab and the WEF promote a particular vision for the 4-IR, the developments he announces are not his brainchildren, and there is nothing original about his formulations. Transhumanists and Singularitarians (or prophets of the technological singularity), such as Ray Kurzweil and many others, forecasted these and more revolutionary developments,. long before Schwab heralded them. The significance of Schwab and the WEF’s take on the new technological revolution is the attempt to harness it to a particular end, presumably “a fairer, greener future.”

Nov 2, 2021

3D bioprinting just got easier — and research could benefit

Posted by in categories: 3D printing, bioprinting, biotech/medical

New 3D printer aims to make bioprinting more accessible with uses that range from personalised drugs to human spare parts.

Nov 2, 2021

Q&A: How 3D Printing Can Enable On-Demand Space Launches

Posted by in categories: 3D printing, government, satellites

But in recent years the government has signaled its intent to open up the sector to private players and last year passed a series of reforms designed to foster innovation and encourage new start ups. Earlier this month Prime Minister Narendra Modi also launched the Indian Space Association, an industry body designed to foster collaboration between public and private players.

One of the companies that has been quick to pounce on these new opportunities is Agnikul, which is being incubated at the Indian Institute of Technology Madras in Chennai. This February, the company successfully test fired its 3D-printed Agnilet rocket engine, just four years after its founding.

While other private space companies like Relativity Space and Rocket Lab also use 3D printing to build their rockets, Agnikul is the first to print an entire rocket engine as a single piece. IEEE Spectrum spoke to co-founder and chief operating officer Moin SPM to find out why the company thinks this gives them an edge in the burgeoning “launch on-demand” market for small satellites. The conversation has been edited for length and clarity.

Page 30 of 137First2728293031323334Last