Toggle light / dark theme

New method a step toward future 3D printing of human tissues

A team of bioengineers and biomedical scientists from the University of Sydney and the Children’s Medical Research Institute (CMRI) at Westmead have used 3D photolithographic printing to create a complex environment for assembling tissue that mimics the architecture of an organ.

The teams were led by Professor Hala Zreiqat and Dr. Peter Newman at the University of Sydney’s School of Biomedical Engineering and developmental biologist Professor Patrick Tam who leads the CMRI’s Embryology Research Unit. Their paper was published in Advanced Science.

Using bioengineering and cell culture methods, the technique was used to instruct stem cells derived from or to become specialized cells that can assemble into an organ-like structure.

Technology advance could expand the reach of 3D nanoprinting

Researchers have developed an easy-to-build, low-cost 3D nanoprinting system that can create arbitrary 3D structures with extremely fine features. The new 3D nanoprinting technique is precise enough to print metamaterials as well as a variety of optical devices and components such as microlenses, micro-optical devices and metamaterials.

“Our system uses a two-step process to realize 3D printing with accuracy reaching the nanometer level, which is suitable for commercial manufacturing,” said research team leader Cuifang Kuang from the Zhejiang Lab and Zhejiang University, both in China. “It can be used for a variety of applications such as printing micro or nanostructures for studying biological cells or fabricating the specialized optical waveguides used for virtual and augmented reality devices.”

Conventional high-resolution 3D nanoprinting approaches use pulsed femtosecond lasers that cost tens of thousands of dollars. In Optics Letters, Kuang and colleagues describe their new system based on an integrated fiber-coupled continuous-wave diode that is not only inexpensive but also easy to operate.

Researchers create electronics-free robotic gripper with 3D printing

UC San Diego.

According to the team, the soft gripper can be put to use right after it comes off the 3D printer and is equipped with built-in gravity and touch sensors, which enable it to pick up, hold, and release objects. “It’s the first time such a gripper can both grip and release. All you have to do is turn the gripper horizontally. This triggers a change in the airflow in the valves, making the two fingers of the gripper release,” said a statement by the university.

3D bioprinting reveals a new approach for killing solid cancer tumors

CIPhotos/iStock.

Standard immunotherapy procedures also employ intravenous injections loaded with NK cells to treat cancer but several limitations with this approach prevent it from delivering satisfying results. For instance, many NK cells lose their viability during the therapy and often fail to target the tumors, according to the researchers.

Revolutionary gel allows metal items to be 3D printed at room temperature

Although there are several methods of 3D-printing metal objects, all of them involve the application of heat – which isn’t conducive to producing certain heat-sensitive electronics, among other things. A new gel, however, can be used to print such items at room temperature.

Created by a team of scientists at North Carolina State University, the material starts out as a solution consisting of copper microparticles suspended in water. Microparticles of another metal, known as eutectic gallium indium alloy (EGaIn) are then added, as is hydrochloric acid.

The latter sets the pH of the water to 1.0, removing oxides from the EGaln and thus temporarily turning it to a liquid-metal state. This causes the EGaln particles (now globules) to cling to the firmer copper particles, forming a network of copper particles connected by EGaln bridges. Methylcellulose is also added, to bulk up the mixture.

Scientists create highly conductive metallic gel for 3D printing at room temperature

This metallic gel is made from a mixture of micron-scale copper particles suspended in water and a small amount of a liquid indium-gallium alloy.

The origins of three-dimensional (3D) printing can be traced back to the 1970s when Johannes F Gottwald patented the Liquid Metal Recorder. This device used continuous inkjet technology to create metal objects that could be removed and reused or melted down for printing again.

Since then, innovations in 3D printing have happened at an unprecedented speed, with the most recent reports of 3D-printed Lamborghini and 3D-printed rocket engines.

Researchers create highly conductive metallic gel for 3D printing

Researchers have developed a metallic gel that is highly electrically conductive and can be used to print three-dimensional (3D) solid objects at room temperature. The paper, “Metallic Gels for Conductive 3D and 4D Printing,” has been published in the journal Matter.

“3D printing has revolutionized manufacturing, but we’re not aware of previous technologies that allowed you to print 3D metal objects at room in a single step,” says Michael Dickey, co-corresponding author of a paper on the work and the Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at North Carolina State University. “This opens the door to manufacturing a wide range of electronic components and devices.”

To create the metallic gel, the researchers start with a solution of micron-scale particles suspended in water. The researchers then add a small amount of an indium-gallium alloy that is liquid metal at room temperature. The resulting mixture is then stirred together.

3D-printed wood furniture could ship flat, then dry into shape

A new way of 3D printing wood that takes advantage of warping could change how we build things in the future — an innovation that could potentially save us all time and money.

The challenge: Wood is made of fibers that absorb moisture like a sponge. If lumber isn’t dried properly, the wood will eventually shrink — bending or twisting in different directions depending on the orientation of the fibers.

That’s called “warping,” and it’s usually something we try to avoid — a warped door won’t close properly, and a warped floor will look wavy rather than flat.

A New Lab-Grown Meat Factory in Spain Will Churn Out 1,000 Metric Tons of Beef Per Year

Cultured meat starts with the extraction of cells from an animal’s tissue, be it a pig, cow, chicken, fish, or any other animal we consume. The cell extraction doesn’t kill or even harm the animal. The cells are mixed with a cocktail of nutrients, oxygen, and moisture inside large bioreactors. Mimicking the environment inside an animal’s body, the bioreactors are kept at a warm temperature, and the cells inside divide, multiply, and mature. Waste products are regularly removed to keep the environment pure.

Once the cells have reached maturity—that is, grown into small chunks of muscle-like material—they’re harvested from the bioreactors to be refined and shaped into a final product. This can involve anything from extrusion cooking and molding to 3D printing and adding in artificial fat.

JBS says the factory it’s building in Spain will be able to produce more than 1,000 metric tons of cultivated beef per year, and could expand capacity to 4,000 metric tons per year in the medium term. That’s smaller than Believer Meats’ facility in the US, which will have an annual production capacity of 10,000 metric tons. But what’s noteworthy about the JBS factory is that it’s focused on producing beef.

3D Printering: Treating Filament Like Paint Opens Wild Possibilities

New angles and concepts in 3D printing are always welcome, and we haven’t seen anything quite like [Horn & Rhode]’s 3D prints that do not look anything like 3D prints, accomplished with an experimental tool called HueForge. The concept behind it is simple (though not easy), and the results can be striking when applied correctly.

The idea is this: colored, melted filament is, in a sense, not that different from colored paint. Both come in various colors, are applied in thin layers, and blend into new colors when they do so. When applied correctly, striking imagery can emerge. An example is shown here, but there are several more both on the HueForge project page as well as models on Printables.

Instead of the 3D printer producing a 3D object, the printer creates a (mostly) flat image similar in structure to a lithophane. But unlike a lithophane, these blend colors in clever and effective ways by printing extremely thin layers in highly precise ways.

/* */