Blog

Archive for the ‘3D printing’ category: Page 23

Aug 22, 2022

This startup 3D prints tiny homes from recyclable plastics

Posted by in categories: 3D printing, habitats

Azure.

Azure is using recycled plastic to 3D print prefab homes. The startup is now selling many house models ranging from a backyard studio to a two-bedroom ADU.

Aug 21, 2022

3D printing microscale ice structures for advanced manufacturing and biomedical engineering

Posted by in categories: 3D printing, bioengineering, biotech/medical, robotics/AI

Big scientific breakthroughs often require inventions at the smallest scale. Advances in tissue engineering that can replace hearts and lungs will require the fabrication of artificial tissues that allow for the flow of blood through passages that are no thicker than a strand of hair. Similarly, miniature softbotic (soft-robot) devices that physically interact with humans safely and comfortably will demand the manufacture of components with complex networks of small liquid and airflow channels.

Advances in 3D printing are making it possible to produce such tiny structures. But for those applications that require very small, smooth, internal channels in specific complex geometries, challenges remain. 3D printing of these geometries using traditional processes requires the use of support structures that are difficult to remove after printing. Printing these models using layer-based methods at a high resolution takes a long time and compromises geometric accuracy.

Researchers at Carnegie Mellon University have developed a high-speed, reproducible fabrication method that turns the 3D “inside out.” They developed an approach to 3D print ice structures that can be used to create sacrificial templates that later form the conduits and other open features inside fabricated parts.

Aug 19, 2022

Scientists design new inks for 3D-printable wearable bioelectronics

Posted by in categories: 3D printing, biotech/medical, chemistry, nanotechnology, wearables

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive , much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

Aug 16, 2022

Algorithm learns to correct 3D printing errors for different parts, materials and systems

Posted by in categories: 3D printing, biotech/medical, information science, robotics/AI

Engineers have created intelligent 3D printers that can quickly detect and correct errors, even in previously unseen designs, or unfamiliar materials like ketchup and mayonnaise, by learning from the experiences of other machines.

The engineers, from the University of Cambridge, developed a machine learning algorithm that can detect and correct a wide variety of different errors in real time, and can be easily added to new or existing machines to enhance their capabilities. 3D printers using the algorithm could also learn how to print new materials by themselves. Details of their low-cost approach are reported in the journal Nature Communications.

3D has the potential to revolutionize the production of complex and customized parts, such as aircraft components, personalized medical implants, or even intricate sweets, and could also transform manufacturing supply chains. However, it is also vulnerable to production errors, from small-scale inaccuracies and mechanical weaknesses through to total build failures.

Aug 16, 2022

New programmable materials can sense their own movements

Posted by in categories: 3D printing, materials

MIT researchers have developed a method for 3D printing materials with tunable mechanical properties, which can sense how they are moving and interacting with the environment. The researchers create these sensing structures using just one material and a single run on a 3D printer.

To accomplish this, the researchers began with 3D-printed lattice materials and incorporated networks of air-filled channels into the structure during the . By measuring how the pressure changes within these channels when the structure is squeezed, bent, or stretched, engineers can receive feedback on how the material is moving.

These lattice materials are composed of in a repeating pattern. Changing the size or shape of the cells alters the material’s mechanical properties, such as stiffness or hardness. For instance, a denser network of cells makes a stiffer structure.

Aug 12, 2022

For the First, 3D Printed Materials can Sense their Movement

Posted by in categories: 3D printing, materials

3D printed material:

MIT researchers manufactured objects made of flexible plastic and electrically conductive filaments. Some varieties of 3D-printed objects can now feel, using a new technique that builds sensors directly into their materials. 3D printing can be considered printing, although not as it’s traditionally been defined. The method opens opportunities for embedding sensors within architected materials, a class of materials whose mechanical properties are programmed through form and composition.

The researchers also created 3D editing software, known as MetaSense, to help users build interactive devices using these metamaterials. The new technique 3D-prints objects made from metamaterial substances made of grids of repeating cells. It was designed to conform to a person’s hand. When a user squeezes one of the flexible buttons, the resulting electric signals help control a digital synthesizer.

Aug 11, 2022

New programmable 3D printed materials can sense their own movements

Posted by in categories: 3D printing, materials

MIT researchers have developed a method for 3D printing materials with tunable mechanical properties, that sense how they are moving and interacting with the environment. The researchers create these sensing structures using just one material and a single run on a 3D printer.

To accomplish this, the researchers began with 3D-printed lattice materials and incorporated networks of air-filled channels into the structure during the printing process. By measuring how the pressure changes within these channels when the structure is squeezed, bent, or stretched, engineers can receive feedback on how the material is moving.

The method opens opportunities for embedding sensors within architected materials, a class of materials whose mechanical properties are programmed through form and composition. Controlling the geometry of features in architected materials alters their mechanical properties, such as stiffness or toughness. For instance, in cellular structures like the lattices the researchers print, a denser network of cells makes a stiffer structure.

Aug 10, 2022

Snapmaker Artisan can expertly 3D print, laser cut, and CNC carve, all in one consumer-friendly machine

Posted by in category: 3D printing

This cabin in the woods is an otherworldly, all-black, geometric structure built to provide cozy refuge even in harsh Finnish winters. It was designed for a California-based CEO who returned home to Finland with her family to be closer to her ancestral land so she could maintain it. The cabin is aptly named Meteorite based.

Aug 10, 2022

Scientists hid encryption key for Wizard of Oz text in plastic molecules

Posted by in categories: 3D printing, biotech/medical, chemistry, computing, encryption

It’s “a revolutionary scientific advance in molecular data storage and cryptography.”


Scientists from the University of Texas at Austin sent a letter to colleagues in Massachusetts with a secret message: an encryption key to unlock a text file of L. Frank Baum’s classic novel The Wonderful Wizard of Oz. The twist: The encryption key was hidden in a special ink laced with polymers, They described their work in a recent paper published in the journal ACS Central Science.

When it comes to alternative means for data storage and retrieval, the goal is to store data in the smallest amount of space in a durable and readable format. Among polymers, DNA has long been the front runner in that regard. As we’ve reported previously, DNA has four chemical building blocks—adenine (A), thymine (T), guanine (G), and cytosine ©—which constitute a type of code. Information can be stored in DNA by converting the data from binary code to a base-4 code and assigning it one of the four letters. A single gram of DNA can represent nearly 1 billion terabytes (1 zettabyte) of data. And the stored data can be preserved for long periods—decades, or even centuries.

Continue reading “Scientists hid encryption key for Wizard of Oz text in plastic molecules” »

Aug 7, 2022

Contactless Building Construction Could Happen With This New Levitation Device

Posted by in categories: 3D printing, habitats

In a world where 3D printing is being applied to everything from houses to rockets to guns 0, the question comes up as to where manufacturing might be headed next.

A new device, called LeviPrint, adds a unique feature to the manufacturing process: acoustic levitation. By trapping small objects in high frequency sound waves, LeviPrint can be used to build a variety of different structures without touching any of the pieces.

In a video released by researchers from Spain’s Universidad Publica de Navarra, or UPNA, LeviPrint can be seen building a variety of different things, including a bridge, a hoop made out of liquid glue droplets and a cat’s ears.

Page 23 of 141First2021222324252627Last