Blog

Archive for the ‘3D printing’ category: Page 20

Oct 13, 2022

This Startup Builds Houses

Posted by in categories: 3D printing, sustainability, transportation

The form gets rolled out on a concrete slab or other foundation, then inflated with an air pump; at this point, it may look a little like one of those bouncy houses you see at children’s parties. Then a ready mix truck shows up—these trucks can mix concrete on their way to a site or at the site itself—and pumps concrete into the form. The company’s website says they can use local ready mix concrete, aircrete (a lightweight version of concrete that incorporates air bubbles instead of traditional aggregate), sustainable cement, and other “pumpable building materials.”

The concrete-pumping step is a bit like 3D printing, though 3D printed homes use concrete as printer “ink” to put walls down layer by layer rather than spitting all the concrete into a form at once. This is even faster; Bell told New Atlas, “For our 100-square-foot and 200-square-foot prototypes, the inflation took 7 to 10 minutes with air. Then the concrete pump filled them in 1.5 hours.”

Once the concrete has dried, the form isn’t stripped away; it stays right where it is, serving as an airtight barrier for waterproofing and insulation. The final step is to add all the things that make a house look and function like a house rather than a giant clay art project, that is, a facade, windows, doors, drywall, HVAC, and plumbing.

Oct 11, 2022

The Alien Von Neumann Unicorn Machine

Posted by in categories: 3D printing, alien life

For spooky october, here is an exploration of the future of biological 3D printing, it’s implications on alien life, and how fantasy could become reality.

My Patreon Page:

Continue reading “The Alien Von Neumann Unicorn Machine” »

Oct 5, 2022

Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders

Posted by in categories: 3D printing, biotech/medical, computing, engineering, nanotechnology, neuroscience

Carnegie Mellon University researchers have pioneered the CMU Array—a new type of microelectrode array for brain computer interface platforms. It holds the potential to transform how doctors are able to treat neurological disorders.

The ultra-high-density microelectrode (MEA), which is 3D-printed at the nanoscale, is fully customizable. This means that one day, patients suffering from epilepsy or limb function loss due to stroke could have personalized medical treatment optimized for their individual needs.

Continue reading “Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders” »

Oct 5, 2022

Engineers create the highest specific strength titanium alloy using 3D printing techniques

Posted by in categories: 3D printing, biotech/medical

A world-first study led by Monash University engineers has demonstrated how cutting-edge 3D-printing techniques can be used to produce an ultra strong commercial titanium alloy—a significant leap forward for the aerospace, space, defense, energy and biomedical industries.

Australian researchers, led by Professor Aijun Huang and Dr. Yuman Zhu from Monash University, used a 3D-printing method to manipulate a novel microstructure. In doing so, they achieved unprecedented mechanical performance.

This research, published in Nature Materials, was undertaken on commercially available alloys and can be applied immediately.

Oct 5, 2022

Researchers develop 3D-printed shape memory alloy with superior superelasticity

Posted by in categories: 3D printing, biotech/medical

Laser powder bed fusion, a 3D-printing technique, offers potential in the manufacturing industry, particularly when fabricating nickel-titanium shape memory alloys with complex geometries. Although this manufacturing technique is attractive for applications in the biomedical and aerospace fields, it has rarely showcased the superelasticity required for specific applications using nickel-titanium shape memory alloys. Defects generated and changes imposed onto the material during the 3D-printing process prevented the superelasticity from appearing in 3D-printed nickel-titanium.

Researchers from Texas A&M University recently showcased superior tensile superelasticity by fabricating a through , nearly doubling the maximum superelasticity reported in literature for 3D printing.

This study was recently published in vol. 229 of the Acta Materialia journal.

Oct 3, 2022

Firehawk’s rocket engines and 3D-printed fuel hit testing milestones ahead of first launch

Posted by in categories: 3D printing, space travel

Although today’s rocket engines are advanced and powerful, they tend to rely on traditional — and naturally volatile — fuels. Firehawk Aerospace has a safer and more stable new solid fuel, new engines, and millions in new funding to take it through the next round of tests to its first in-atmosphere demonstration launch.

Firehawk appeared on the scene two years ago with a fresh take on hybrid engines; the breakthrough made by CEO Will Edwards and chief scientist Ron Jones was to give that fuel a structure and 3D print it in a specially engineered matrix.

The structured, solid fuel grain is more stable and easier to transport than other fuels, and burns in a very predictable way. The company designed engines around this concept and tested them at smaller scales, though they have also been working on the kind of engine you might actually use if you were going to space. But the company has said that one of the strengths of the system is its adaptability.

Oct 3, 2022

How to 3D-Print One of the Strongest Stainless Steels

Posted by in categories: 3D printing, nuclear energy, transportation

For airliners, cargo ships, nuclear power plants and other critical technologies, strength and durability are essential. This is why many contain a remarkably strong and corrosion-resistant alloy called 17–4 precipitation hardening (PH) stainless steel. Now, for the first time ever, 17–4 PH steel can be consistently 3D-printed while retaining its favorable characteristics.

A team of researchers.

Sep 30, 2022

Stanford’s new 3D printing tech is up to 10 times faster than the quickest printer

Posted by in categories: 3D printing, innovation

Researchers were successful in printing models of well-known structures from several nations.

The developments in the field of additive manufacturing continue unabated. This time, Stanford University’s new burst will bring further innovation to the industry.

Published in Science Advances on September 28, the results demonstrate that the novel process is much faster than the quickest high-resolution printing method currently available.

Continue reading “Stanford’s new 3D printing tech is up to 10 times faster than the quickest printer” »

Sep 29, 2022

New 3D printing method promises faster printing with multiple materials

Posted by in categories: 3D printing, biotech/medical, chemistry, engineering

Advancements in 3D printing have made it easier for designers and engineers to customize projects, create physical prototypes at different scales, and produce structures that can’t be made with more traditional manufacturing techniques. But the technology still faces limitations—the process is slow and requires specific materials which, for the most part, must be used one at a time.

Researchers at Stanford have developed a method of 3D printing that promises to create prints faster, using multiple types of in a single object. Their design, published recently in Science Advances, is 5 to 10 times faster than the quickest high-resolution printing method currently available and could potentially allow researchers to use thicker resins with better mechanical and .

Continue reading “New 3D printing method promises faster printing with multiple materials” »

Sep 27, 2022

Technology produces more than 100 medical microrobots per minute that can be disintegrated in the body

Posted by in categories: 3D printing, biotech/medical, nanotechnology, robotics/AI

Daegu Gyeongbuk Institute of Science & Technology (DGIST, President Yang Kook) Professor Hongsoo Choi’s team of the Department of Robotics and Mechatronics Engineering collaborated with Professor Sung-Won Kim’s team at Seoul St. Mary’s Hospital, Catholic University of Korea, and Professor Bradley J. Nelson’s team at ETH Zurich to develop a technology that produces more than 100 microrobots per minute that can be disintegrated in the body.

Microrobots aiming at minimal invasive targeted precision therapy can be manufactured in various ways. Among them, ultra-fine 3D called two-photon polymerization method, a method that triggers polymerization by intersecting two lasers in synthetic resin, is the most used. This technology can produce a structure with nanometer-level precision. However, a disadvantage exists in that producing one microrobot is time consuming because voxels, the pixels realized by 3D printing, must be cured successively. In addition, the magnetic nanoparticles contained in the robot can block the light path during the two-photon polymerization process. This process result may not be uniform when using magnetic nanoparticles with high concentration.

To overcome the limitations of the existing microrobot manufacturing method, DGIST Professor Hongsoo Choi’s research team developed a method to create microrobots at a high speed of 100 per minute by flowing a mixture of magnetic nanoparticles and gelatin methacrylate, which is biodegradable and can be cured by light, into the microfluidic chip. This is more than 10,000 times faster than using the existing two-photon polymerization method to manufacture microrobots.

Page 20 of 141First1718192021222324Last