Blog

Archive for the ‘bioengineering’ category: Page 3

Oct 19, 2024

Regenerative Med & Tissue Bioengineering Thought Leader Stream — Progress, Potential & Possibilities

Posted by in categories: bioengineering, media & arts

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Oct 18, 2024

DNA editing achieved for the first time in history: We have done what was though to be impossible

Posted by in categories: bioengineering, biotech/medical, genetics, health

An achievement that was deemed impossible has successfully become accomplished. For the first time in history, DNA can be edited. One of the goals is to be able to get rid of genetic diseases. This whole concept in genomic science has opened up a whole new revolutionary way of dealing with such critical health issues. There is a possibility that illnesses that were once incurable have a chance to be curable.

MedlinePlus provides a definition and states that a collection of tools known as genome editing, or gene editing, allows researchers to alter an organism’s DNA. These technologies enable the addition, deletion, or modification of genetic material at specific genomic regions. A person’s DNA can be altered through gene editing to fix mistakes that lead to illnesses.

CRISPR-Cas9, short for CRISPR-associated protein 9 and clustered regularly interspaced short palindromic repeats, is a well-known example as one of the approaches used and developed by scientists to edit DNA. The scientific community is very excited about the CRISPR-Cas9 system since it is more accurate, efficient, quicker, and less expensive than existing genome editing techniques.

Oct 15, 2024

Compact ‘Gene Scissors’ enable Effective Genome Editing, may offer Future Treatment of High Cholesterol Gene Defect

Posted by in categories: bioengineering, biotech/medical, genetics, information science, robotics/AI

CRISPR-Cas is used broadly in research and medicine to edit, insert, delete or regulate genes in organisms. TnpB is an ancestor of this well-known “gene scissors” but is much smaller and thus easier to transport into cells.

Using protein engineering and AI algorithms, University of Zurich researchers have now enhanced TnpB capabilities to make DNA editing more efficient and versatile, paving the way for treating a genetic defect for high cholesterol in the future. The work has been published in Nature Methods.

CRISPR-Cas systems, which consist of protein and RNA components, were originally developed as a natural defense mechanism of bacteria to fend off intruding viruses. Over the last decade, re-engineering these so-called “gene scissors” has revolutionized genetic engineering in science and medicine.

Oct 15, 2024

Low Gravity in Space Travel found to Weaken and Disrupt Normal Rhythm in Heart Muscle Cells

Posted by in categories: bioengineering, biotech/medical, life extension

Johns Hopkins Medicine scientists who arranged for 48 human bioengineered heart tissue samples to spend 30 days at the International Space Station report evidence that the low gravity conditions in space weakened the tissues and disrupted their normal rhythmic beats when compared to Earth-bound samples from the same source.

The scientists said the heart tissues “really don’t fare well in space,” and over time, the tissues aboard the space station beat about half as strongly as tissues from the same source kept on Earth.

The findings, they say, expand scientists’ knowledge of low gravity’s potential effects on astronauts’ survival and health during long space missions, and they may serve as models for studying heart muscle aging and therapeutics on Earth.

Oct 14, 2024

Engineers 3D Print Sturdy Glass Bricks for Building Structures

Posted by in categories: 3D printing, bioengineering, sustainability

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. Engineers developed a new kind of reconfigurable masonry made from 3D-printed, recycled glass. The bricks could be reused many times over in building facades and internal walls.

What if construction materials could be put together and taken apart as easily as LEGO bricks? Such reconfigurable masonry would be disassembled at the end of a building’s lifetime and reassembled into a new structure, in a sustainable cycle that could supply generations of buildings using the same physical building blocks.

That’s the idea behind circular construction, which aims to reuse and repurpose a building’s materials whenever possible, to minimize the manufacturing of new materials and reduce the construction industry’s “embodied carbon,” which refers to the greenhouse gas emissions associated with every process throughout a building’s construction, from manufacturing to demolition.

Oct 13, 2024

Wastewater bacteria can break down plastic for food

Posted by in categories: bioengineering, food

Researchers have long observed that a common family of environmental bacteria, Comamonadacae, grow on plastics littered throughout urban rivers and wastewater systems.


Finding could lead to bioengineering solutions to clean up plastic waste.

A new study finds that a common bacterium can break down plastic for food, opening new possibilities for bacteria-based engineering solutions to help clean up plastic waste. Illustration credit Ludmilla Aristilde/Northwestern University.

Continue reading “Wastewater bacteria can break down plastic for food” »

Oct 12, 2024

What If We Became A Type 3 Civilization? 15 Predictions

Posted by in categories: augmented reality, bioengineering, biological, genetics, Ray Kurzweil, robotics/AI, singularity, transhumanism

This video explores what life would be like if we became a Type 3 Civilization. Watch this next video about us becoming a Type 2 civilization: • What If We Became A Type 2 Civilizati…
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://www.futurebusinesstech.com/su
🤖 AI for Business Leaders (Udacity Program): https://bit.ly/3Qjxkmu.
☕ My Patreon: / futurebusinesstech.
➡️ Official Discord Server: / discord.

SOURCES:
https://www.futuretimeline.net.
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA

Continue reading “What If We Became A Type 3 Civilization? 15 Predictions” »

Oct 10, 2024

Bioengineered enzyme can produce synthetic genetic material, advancing development of new therapeutic options

Posted by in categories: bioengineering, biotech/medical, genetics

A research team led by the University of California, Irvine has engineered an efficient new enzyme that can produce a synthetic genetic material called threose nucleic acid. The ability to synthesize artificial chains of TNA, which is inherently more stable than DNA, advances the discovery of potentially more powerful, precise therapeutic options to treat cancer and autoimmune, metabolic and infectious diseases.

Oct 5, 2024

Dr. Luba Perry, Ph.D. — CEO, ReConstruct Bio — Bioengineered Breast Reconstruction And Augmentation

Posted by in categories: bioengineering, biotech/medical, health

Bioengineered breast reconstruction and augmentation — dr. luba perry, phd — CEO, reconstruct bio.


Dr. Luba Perry, Ph.D. is Co-Founder and CEO of ReConstruct Bio (https://wyss.harvard.edu/technology/r…), an innovative venture emerging from Harvard’s Wyss Institute (https://wyss.harvard.edu/team/advance…), aimed at redefining the fields of medical reconstruction and aesthetics with an initial application of their groundbreaking technology on breast reconstruction and augmentation. With a multidisciplinary team of experts, the ReConstruct Bio team has developed the BioImplant—a living, bioengineered tissue created from the patient’s own cells, to provide safer, more natural alternative to current standards, which are often associated with significant drawbacks and health concerns.

Continue reading “Dr. Luba Perry, Ph.D. — CEO, ReConstruct Bio — Bioengineered Breast Reconstruction And Augmentation” »

Sep 30, 2024

Spinning artificial spider silk into next-generation medical materials

Posted by in categories: bioengineering, biotech/medical, education, genetics

Spider silk is one of the strongest materials on Earth, technically stronger than steel for a material of its size. However, it’s tough to obtain—spiders are too territorial (and cannibalistic) to breed them like silkworms, leading scientists to turn to artificial options.

Teaching microbes to produce the through is one such option, but this has proved challenging because the proteins tend to stick together, reducing the silk’s yield. So, Bingbing Gao and colleagues wanted to modify the natural protein sequence to design an easily spinnable, yet still stable, spider silk using microbes.

The team first used these microbes to produce the silk proteins, adding extra peptides as well. The new peptides, following a pattern found in the protein sequence of amyloid polypeptides, helped the artificial silk proteins form an orderly structure when folded and prevented them from sticking together in solution, increasing their yield.

Page 3 of 21712345678Last