Dr. Pablo H. Hennings-Yeomans
The MIT Technology Review article A Face-Finding Search Engine: A new approach to face recognition is better at handling low-resolution video said
Today there are more low-quality video cameras — surveillance and traffic cameras, cell-phone cameras and webcams — than ever before. But modern search engines can’t identify objects very reliably in clear, static pictures, much less in grainy YouTube clips. A new software approach from researchers at Carnegie Mellon University could make it easier to identify a person’s face in a low-resolution video. The researchers say that the software could be used to identify criminals or missing persons, or it could be integrated into next-generation video search engines.
Today’s face-recognition systems actually work quite well, says Pablo Hennings-Yeomans, a researcher at Carnegie Mellon who developed the system — when, that is, researchers can control the lighting, angle of the face, and type of camera used. “The new science of face recognition is dealing with unconstrained environments,” he says. “Our work, in particular, focuses on the problem of resolution.”
Pablo H. Hennings-Yeomans, Ph.D. is a
Research Assistant
in the
Department of
Electrical and Computer Engineering at Carnegie Mellon University (CMU)
working under Professor Vijaya Kumar in the area of
biometrics.
Most of his work at CMU has been in the area of biometric recognition,
such as fingerprint, face, iris, and palmprint recognition (most of his
publications are on palmprint and face). Biometrics is a pattern
recognition (or pattern classification) problem that involves image
processing, analysis and modeling, as well as design of robust
classification algorithms using machine learning techniques. In his
work he focuses on improving the reliability and performance of each
biometric technology under different environments.
His current research is on super-resolution methods for recognition of
low resolution faces. Super-resolution is about inferring the missing
pixels lost when a high-resolution image is transformed to a
low-resolution one. Super-resolution in his case involves learning
features from large databases of high-resolution face images.
Recent work includes wavelet analysis of biometric imagery to find
subspaces where classification performance is best for a specific
classification algorithm. He designs wavelet packet trees
that benefit advanced correlation filter classifiers. He also worked in
palmprint recognition; he showed that a filter bank of advanced
correlation filters is a very competitive classifier for this
biometric.
Pablo coauthored
Wavelet Packet Correlation Methods in Biometrics,
Recognition of Low-Resolution Faces Using Multiple Still Images and
Multiple Cameras,
Simultaneous Super-Resolution and Feature Extraction for Recognition
of
Low Resolution Faces,
Palmprint Recognition with Multiple Correlation Filters Using Edge
Detection for Class-Specific Segmentation,
Multimodal biometric fusion using multiple-input correlation filter
classifiers, and
Hiding phase-quantized biometrics: a case of steganography for
reduced-complexity correlation filter classifiers.
Pablo earned his B.S.
degree in Electronics and Communications Engineering (1998)
and his M.S. degree in Electronic Systems (2002), both from
the Tec de Monterrey (ITESM), Monterrey Campus, Mexico.
He earned his Ph.D. in Electrical and Computer Engineering at Carnegie
Mellon University, USA in 2008.