Professor Fuyu Tamanoi
The Discovery News article Nanoimpellers Zap Cancer Cells From Within said
A new nanodevice loaded with powerful cancer-killing drugs can operate inside a living cell to zap cancer cells in response to light.
The nanomachine, created by researchers in California, is called a nanoimpeller and is the first of its kind.
“We have developed a machine to deliver the cancer drugs only in the cancer cells and not normal cells,” said Fuyuhiko Tamanoi, a study author and scientist at the University of California, Los Angeles.
“Our research is the first demonstration of controlled and on-demand release of anticancer drugs using mechanized nanoparticles in living cells,” said Tamanoi.
Fuyu Tamanoi, Ph.D. is Professor and Vice Chair, Microbiology,
Immunology, and Molecular Genetics,
Director, JCCC Signal Transduction and Therapeutics Program Area, and
Member, California NanoSystems Institute.
Fuyu has served on the UCLA School of
Medicine and UCLA College faculty since he joined the Department of
Microbiology, Immunology & Molecular Genetics in 1993. He became a full
professor in 1997. Since 1996, he has been a Director of Signal
Transduction Program Area at Jonsson Comprehensive Cancer
Center.
He is interested in molecular switches and
cellular signaling networks. His research focuses on the Ras family
proteins that act as a nanoscale switch by shuttling between a GTP bound
active form and a GDP-bound inactive form. Current research is aimed at
characterizing two members of the Ras family proteins called Ras and
Rheb. While Ras activates signaling pathways such as Raf/MAP kinase
signaling, Rheb activates mTOR signaling that regulates protein
synthesis. Overactivation of these molecular switches forms the basis of
human diseases such as cancer, neurofibromatosis, and tuberous
sclerosis.
Another research focus of his is to carry out nanoscale modulation of
the signaling network. To accomplish this, small organic molecule
compounds that can regulate the activity of molecular switches have been
identified. One type of compound blocks their lipid modification
resulting in the inhibition of their membrane association. Experiments
are underway to package these compounds into nanoparticles and achieve
nanodelivery into human cancer cells.
Fuyu coauthored
IRA2, a second gene of Saccharomyces cerevisiae that encodes
a protein with a domain homologous to mammalian ras
GTPase-activating protein,
Spatial regulation of the exocyst complex by Rho1 GTPase,
Identification of Ras farnesyltransferase inhibitors by microbial
screening,
Yeast Screens for Inhibitors of Ras-Raf Interaction
and Characterization of MCP Inhibitors of Ras-Raf Interaction,
Farnesyltransferase inhibitors induce cytochrome c release
and caspase 3 activation preferentially in transformed cells,
and
Analysis of the transforming potential of the human H-ras gene by
random
mutagenesis.
From 1980 to 1985, he was a senior staff investigator at Cold Spring
Harbor Laboratory, where he worked on adenovirus DNA replication. From
1985 to 1993, he was an Assistant Professor and then Associate Professor
at the University of Chicago, where he initiated studies on lipid
modification of the Ras family proteins. His laboratory research centers
on signal transduction and signal transduction inhibitors. He is
currently exploring ways to deliver signal transduction inhibitors using
nanoparticles.
Fuyu earned his B.S. and M.S. in Biochemistry at the University of
Tokyo. He earned his Ph.D. in Molecular Biology at Nagoya University in
1977. He was a postdoctoral fellow at Harvard Medical School, where he
worked on bacteriophage DNA replication.
Watch his CBS interview.
Read
New Nanomaterials To Deliver Anticancer Drugs To Cells
Developed and
Nanomachines to Treat Cancer.