Athena Andreadis – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Sun, 04 Jun 2017 19:14:25 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.3 Forever Young https://spanish.lifeboat.com/blog/2009/05/forever-young https://spanish.lifeboat.com/blog/2009/05/forever-young#comments Mon, 04 May 2009 19:09:22 +0000 http://lifeboat.com/blog/?p=446 (Crossposted on the blog of Starship Reckless)

Eleven years ago, Random House published my book To Seek Out New Life: The Biology of Star Trek.  With the occasion of the premiere of the Star Trek reboot film and with my mind still bruised from the turgid awfulness of Battlestar Galactica, I decided to post the epilogue of my book, very lightly updated — as an antidote to blasé pseudo-sophistication and a reminder that Prometheus is humanity’s best embodiment.  My major hope for the new film is that Uhura does more than answer phones and/or smooch Kirk.

Coda:  The Infinite Frontier

star-trekA younger science than physics, biology is more linear and less exotic than its older sibling.  Whereas physics is (mostly) elegant and symmetric, biology is lunging and ungainly, bound to the material and macroscopic.  Its predictions are more specific, its theories less sweeping.  And yet, in the end, the exploration of life is the frontier that matters the most.  Life gives meaning to all elegant theories and contraptions, life is where the worlds of cosmology and ethics intersect.

Our exploration of Star Trek biology has taken us through wide and distant fields — from the underpinnings of life to the purposeful chaos of our brains; from the precise minuets of our genes to the tangled webs of our societies.

How much of the Star Trek biology is feasible?  I have to say that human immortality, psionic powers, the transporter and the universal translator are unlikely, if not impossible.  On the other hand, I do envision human genetic engineering and cloning, organ and limb regeneration, intelligent robots and immersive virtual reality — quite possibly in the near future.

Furthermore, the limitations I’ve discussed in this book only apply to earth biology.  Even within the confines of our own planet, isolated ecosystems have yielded extraordinary lifeforms — the marsupials of Australia; the flower-like tubeworms near the hot vents of the ocean depths; the bacteriophage particles which are uncannily similar to the planetary landers.  It is certain that when we finally go into space, whatever we meet will exceed our wildest imaginings.

Going beyond strictly scientific matters, I think that the accuracy of scientific details in Star Trek is almost irrelevant.  Of course, it puzzles me that a show which pays millions to principal actors and for special effects cannot hire a few grad students to vet their scripts for glaring factual errors (I bet they could even get them for free, they’d be that thrilled to participate). Nevertheless, much more vital is Star Trek’s stance toward science and the correctness of the scientific principles that it showcases.  On the latter two counts, the series has been spectacularly successful and damaging at the same time.

The most crucial positive elements of Star Trek are its overall favorable attitude towards science and its strong endorsement of the idea of exploration.  Equally important (despite frequent lapses) is the fact that the Enterprise is meant to be a large equivalent to Cousteau’s Calypso, not a space Stealth Bomber.  However, some negative elements are so strong that they almost short-circuit the bright promise of the show.

I cannot be too harsh on Star Trek, because it’s science fiction — and TV science fiction, at that.  Yet by choosing to highlight science, Star Trek has also taken on the responsibility of portraying scientific concepts and approaches accurately.  Each time Star Trek mangles an important scientific concept (such as evolution or black hole event horizons), it misleads a disproportionately large number of people.

The other trouble with Star Trek is its reluctance to showcase truly imaginative or controversial ideas and viewpoints.  Of course, the accepted wisdom of media executives who increasingly rely on repeating well-worn concepts is that controversial positions sink ratings.  So Star Trek often ignores the agonies and ecstasies of real science and the excitement of true or projected scientific discoveries, replacing them with pseudo-scientific gobbledygook more appropriate for series like The X-Files, Star Wars and Battlestar Galactica.  Exciting ideas (silicon lifeforms beyond robots, parallel universes) briefly appear on Star Trek, only to sink without a trace.  This almost pathological timidity of Star Trek, which enjoys the good fortune of a dedicated following and so could easily afford to cut loose, does not bode well for its descendants or its genre.

trekmovie2w

On the other hand, technobabble and all, Star Trek fulfills a very imporant role.  It shows and endorses the value of science and technology — the only popular TV series to do so, at a time when science has lost both appeal and prestige.  With the increasing depth of each scientific field, and the burgeoning of specialized jargon, it is distressingly easy for us scientists to isolate ourselves within our small niches and forget to share the wonders of our discoveries with our fellow passengers on the starship Earth.  Despite its errors, Star Trek’s greatest contribution is that it has made us dream of possibilities, and that it has made that dream accessible to people both inside and outside science.

Scientific understanding does not strip away the mystery and grandeur of the universe; the intricate patterns only become lovelier as more and more of them appear and come into focus.  The sense of excitement and fulfillment that accompanies even the smallest scientific discovery is so great that it can only be communicated in embarrassingly emotional terms, even by Mr. Spock and Commander Data.  In the end these glimpses of the whole, not fame or riches, are the real reason why the scientists never go into the suspended animation cocoons, but stay at the starship chart tables and observation posts, watching the great galaxy wheels slowly turn, the stars ignite and darken.

Star Trek’s greatest legacy is the communication of the urge to explore, to comprehend, with its accompanying excitement and wonder.  Whatever else we find out there, beyond the shelter of our atmosphere, we may discover that thirst for knowledge may be the one characteristic common to any intelligent life we encounter in our travels.  It is with the hope of such an encounter that people throng around the transmissions from Voyager, Sojourner, CoRoT, Kepler.  And even now, contained in the sphere of expanding radio and television transmissions speeding away from Earth, Star Trek may be acting as our ambassador.

]]>
https://spanish.lifeboat.com/blog/2009/05/forever-young/feed 4
On Being Bitten to Death by Ducks https://spanish.lifeboat.com/blog/2009/04/on-being-bitten-to-death-by-ducks Sun, 05 Apr 2009 22:56:11 +0000 http://lifeboat.com/blog/?p=373 (Crossposted on the blog of Starship Reckless)

Working feverishly on the bench, I’ve had little time to closely track the ongoing spat between Dawkins and Nisbet.  Others have dissected this conflict and its ramifications in great detail.  What I want to discuss is whether scientists can or should represent their fields to non-scientists.

There is more than a dollop of truth in the Hollywood cliché of the tongue-tied scientist.  Nevertheless, scientists can explain at least their own domain of expertise just fine, even become major popular voices (Sagan, Hawkin, Gould — and, yes,  Dawkins; all white Anglo men, granted, but at least it means they have fewer gatekeepers questioning their legitimacy).  Most scientists don’t speak up because they’re clocking infernally long hours doing first-hand science and/or training successors, rather than trying to become middle(wo)men for their disciplines.

prometheus

Experimental biologists, in particular, are faced with unique challenges: not only are they hobbled by ever-decreasing funds for basic research while expected to still deliver like before.  They are also beset by anti-evolutionists, the last niche that science deniers can occupy without being classed with geocentrists, flat-earthers and exorcists.  Additionally, they are faced with the complexity (both intrinsic and social) of the phenomenon they’re trying to understand, whose subtleties preclude catchy soundbites and get-famous-quick schemes.

Last but not least, biologists have to contend with self-anointed experts, from physicists to science fiction writers to software engineers to MBAs, who believe they know more about the field than its practitioners.  As a result, they have largely left the public face of their science to others, in part because its benefits — the quadrupling of the human lifespan from antibiotics and vaccines, to give just one example — are so obvious as to make advertisement seem embarrassing overkill.

As a working biologist, who must constantly “prove” the value of my work to credentialed peers as well as laypeople in order to keep doing basic research on dementia, I’m sick of accommodationists and appeasers.  Gould, despite his erudition and eloquence, did a huge amount of damage when he proposed his non-overlapping magisteria.  I’m tired of self-anointed flatulists — pardon me, futurists — who waft forth on biological topics they know little about, claiming that smatterings gleaned largely from the Internet make them understand the big picture (much sexier than those plodding, narrow-minded, boring experts!).  I’m sick and tired of being told that I should leave the defense and promulgation of scientific values to “communications experts” who use the platform for their own aggrandizement.

Nor are non-scientists served well by condescending pseudo-interpretations that treat them like ignorant, stupid children.  People need to view the issues in all their complexity, because complex problems require nuanced solutions, long-term effort and incorporation of new knowlege. Considering that the outcomes of such discussions have concrete repercussions on the long-term viability prospects of our species and our planet, I staunchly believe that accommodationism and silence on the part of scientists is little short of immoral.

Unlike astronomy and physics, biology has been reluctant to present simplified versions of itself.  Although ours is a relatively young science whose predictions are less derived from general principles, our direct and indirect impact exceeds that of all others.  Therefore, we must have articulate spokespeople, rather than delegate discussion of our work to journalists or politicians, even if they’re well-intentioned and well-informed.

Image: Prometheus, black-figure Spartan vase ~500 BCE.

]]>
The Heirs of Prometheus https://spanish.lifeboat.com/blog/2008/05/the-heirs-of-prometheus https://spanish.lifeboat.com/blog/2008/05/the-heirs-of-prometheus#comments Thu, 29 May 2008 17:18:07 +0000 http://lifeboat.com/blog/?p=148 Crossposted from the blog of Starship Reckless

Note: Like anyone who’s breathing, I have been tracking the Phoenix Lander. So I thought this might be a good moment to share a personal memory of one of its ancestors. That one did not survive to fulfill its mission, but the dream stayed alive. What I said then is even more true today, almost a decade later. The Greek version of this article was published in the largest Greek daily, Eleftherotypia (Free Press).

Prometheus

Prometheus Stealing Fire by André Durand (cropped)

It’s slightly cloudy — unusual for sunny Florida. The ocean-scented air is alive with birds: gulls, pelicans, hawks. On a wooden platform, a group of people of all ages and colors is squinting fixedly at a point on the horizon about two kilometers away, where a gantry holds a slim rocket that balances a tiny load on its nose. A level voice announces from the loudspeakers: “The T minus ten holding period is over. We’re going forward.”

The people break into wild cheers, then fall eerily silent. Curious children are shushed and told to look there, there; final adjustments are made to cameras and binoculars. The minus ten holding period is the last chance to abort. The weather was such that until this moment the decision to launch could change.

Like heartbeats, the announcements come. “T minus five… minus three… minus one… T minus thirty seconds… minus twenty seconds… minus ten seconds… Now you can hear a pin drop. “Nine… eight.. seven… six… five… four.… three… two…” All the spectators shiver, holding their breath.

“Liftoff!”

A fiery flower unfurls on the horizon. From within it emerges a dark blue arrow that pierces the sky, followed by a cloud of white smoke. The ground shakes from the aftershocks. Seconds later, the sonic boom reaches the group. Many of its members are wiping tears without making any effort to hide them – despite the Anglosaxon tradition that discourages public displays of emotion.

And so, in front of my eyes, accompanied by tears and cheers, loaded with blessings and expectations, on January 3, 1999, the Polar Lander left for Mars. After a year of travel, it will touch down on the South Pole of Mars and search for subterranean water.

Why is this mission important? Today Mars is bone-dry, but its surface features betray that it enjoyed liquid water in the past – gullies, wadis and coasts of now-vanished seas are clearly visible in its photos.

Wherever there’s water, there is life. Martian life, if it exists, is almost certainly at the bacterial stage. But if we find it – or just its petrified remains – this will give us the very first proof that we are not alone, that our Universe, vast as it is, may perhaps contain companions.

Such a discovery will overshadow even the upheavals brought about by Copernicus and Darwin. It will break our eternal isolation and force us to completely revise our ideas of the universe and our place in it. The existence of extraterrestrial life will make us understand that we occupy no special place in the universe, that we are observers or fellow travelers and not, by the grace of any god, lords of creation. And it will force us to remember yet again that humanity is a single entity, traveling on a lone ship that makes it way through an indifferent sea.

For a bearer of such a heavy literal and symbolic load, the Polar Lander is miniscule. The size of a small fridge, jam-packed with instruments, it resembles a beetle, with the fragile solar panels standing in for wings. Among other things, it carries a microphone. For the first time, we will hear the sounds of the winds on another planet.

The inventiveness required to put together a space mission is almost unbelievable. As an example, the two tiny instruments that will detect the potential underground water and send the results to the orbiters must achieve the following: land unscathed after enduring the heat of atmospheric entry; pierce like missiles a thick layer of ice without harming their electronic circuits; enter the ground in the correct orientation without rudders, parachutes, engines or further instructions from Earth; and last but not least, do exact measurements with fragile instruments the size of a small human finger. Such demands are the order of the day for NASA’s technical personnel.

The morning before the launch, the engineers and scientists who achieved these miracles explained to us the goals of the mission and the details of the craft and its instruments. All were trembling with tension and fatigue, but their eyes burned with their vision.

These men and women, whose names will never become known or celebrated like those of the astronauts, already dedicated four years of their lives to this mission – and will give as many in the future, analyzing the information sent by the spacecraft. Like the artisans who built Stonehenge, the Pyramids, Aghia Sofia, the Taj Mahal, these people grow old in obscurity, with their only reward the knowledge that will be added to the annals of the species… and with their sole but immense privilege to be the first who glimpse the New Worlds.

Because, in the end, that is the real mission. Exploration of space is the large collective effort of this era that will change all our lives. Not only because we may discover alien life. Closer to home, this exploration is the guarantee for our continuation.

Earth is truly the Garden of Eden, but its magnanimity has spoiled us. Now, having grown used to the caresses of a planet ideal for our needs as well as the luxuries of advanced technology, we have almost exhausted the finite resources of our paradise. With the pressures of the human population, the rest of the biosphere is contracting daily and the quality of life is dwindling for all except the privileged.

It is true that we have not solved our problems here, and inevitably we will take them with us wherever we go. However, if we wait till the last moment to launch the ships with the seeds of terrestrial life, the likelihood of finding another welcoming harbor before we suck our parent planet dry will dwindle to zero. We must prepare for this great step now, while we still have leeway.

All this is felt by those that came to wave farewell to the Lander. That is why they brought their children to share the stargazing, something very unusual for Americans who almost always separate their social activities by age: they want the next generation to remember that this tiny spacecraft and its companions carry our future.

Sojourner, the Lander’s predecessor, was the first to walk on Mars – a kid’s toy cart, which sent us thousands of pictures of the planet’s surface. A famous cartoonist showed it leaving human footprints, and he was right: these miniscule spacecraft, that have opened windows to the universe for us without costing even a millionth of a military aircraft, are the expression of our best selves. And they, along with our radio and television emissions, are our heralds and ambassadors to the unknown.

The day after the launch, the NASA PR office showed us around. The Space Center is within a national forest full of endangered flora and fauna. If the Federal Government had not inadvertently protected it, that entire coast would be a solid cement wall. The paths cross canals full of water lilies where alligators sun themselves. Egrets and cranes fish in the shallows. Above the rioting semi-tropical greenery rise the scaffoldings of the launch pads and the buildings where the spacecraft are built.

The building where the craft undergo final assembly is so large that it creates thermals. As a result, it is constantly circled by a fleet of hawks – a fitting retinue. Its vast interior creates such local temperature gradients that often it rains or fogs. Like an Escher drawing, it teems with skywalks and protrusions that hold entire labs. Looking down from the top you feel like a feather, as though here gravity doesn’t hold sway.

The launch pad that we visited is called Alpha. From there rose the Apollos for their trips to the moon. The pad is a giant Meccano set, a plaything for Titans. The surrounding wire fences are full of holes, from the jagged fragments of asphalt that erupt from the floor whenever it siphons the flames of liftoff.

I bent and took a piece of the worn, burnt asphalt. These scaffoldings don’t launch just spaceships and falcons. Around them fly the dreams of all humanity. This place is sacred, it has received sacrifices – the crew of the first Apollo, the crew of the Challenger, the nameless technicians of the missions. And the deity to whom these offerings are dedicated is Prometheus, who rose against mightier powers. His rebellion made us who we are and brought us here, in pain and in glory.

]]>
https://spanish.lifeboat.com/blog/2008/05/the-heirs-of-prometheus/feed 2
Dreamers of a Better Future, Unite! https://spanish.lifeboat.com/blog/2008/03/dreamers-of-a-better-future-unite https://spanish.lifeboat.com/blog/2008/03/dreamers-of-a-better-future-unite#comments Fri, 14 Mar 2008 17:00:30 +0000 http://lifeboat.com/blog/?p=132 [Crossposted from the blog of Starship Reckless]

Views of space travel have grown increasingly pessimistic in the last decade. This is not surprising: SETI still has received no unambiguous requests for more Chuck Berry from its listening posts, NASA is busy re-inventing flywheels and citizens even of first-world countries feel beleaguered in a world that seems increasingly hostile to any but the extraordinarily privileged. Always a weathervane of the present, speculative fiction has been gazing more and more inwardly – either to a hazy gold-tinted past (fantasy, both literally and metaphorically) or to a smoggy rust-colored earthbound future (cyberpunk).

The philosophically inclined are slightly more optimistic. Transhumanists, the new utopians, extol the pleasures of a future when our bodies, particularly our brains/minds, will be optimized (or at least not mind that they’re not optimized) by a combination of bioengineering, neurocognitive manipulation, nanotech and AI. Most transhumanists, especially those with a socially progressive agenda, are as decisively earthbound as cyberpunk authors. They consider space exploration a misguided waste of resources, a potentially dangerous distraction from here-and-now problems – ecological collapse, inequality and poverty, incurable diseases among which transhumanists routinely count aging, not to mention variants of gray goo.

And yet, despite the uncoolness of space exploration, despite NASA’s disastrous holding pattern, there are those of us who still stubbornly dream of going to the stars. We are not starry-eyed romantics. We recognize that the problems associated with spacefaring are formidable (as examined briefly in Making Aliens 1, 2 and 3). But I, at least, think that improving circumstances on earth and exploring space are not mutually exclusive, either philosophically or – perhaps just as importantly – financially. In fact, I consider this a false dilemma. I believe that both sides have a much greater likelihood to implement their plans if they coordinate their efforts, for a very simple reason: the attributes required for successful space exploration are also primary goals of transhumanism.

Consider the ingredients that would make an ideal crewmember of a space expedition: robust physical and mental health, biological and psychological adaptability, longevity, ability to interphase directly with components of the ship. In short, enhancements and augmentations eventually resulting in self-repairing quasi-immortals with extended senses and capabilities – the loose working definition of transhuman.

Coordination of the two movements would give a real, concrete purpose to transhumanism beyond the rather uncompelling objective of giving everyone a semi-infinite life of leisure (without guarantees that either terrestrial resources or the human mental and social framework could accommodate such a shift). It would also turn the journey to the stars into a more hopeful proposition, since it might make it possible that those who started the journey could live to see planetfall.

Whereas spacefaring enthusiasts acknowledge the enormity of the undertaking they propose, most transhumanists take it as an article of faith that their ideas will be realized soon, though the goalposts keep receding into the future. As more soundbite than proof they invoke Moore’s exponential law, equating stodgy silicon with complex, contrary carbon. However, despite such confident optimism, enhancements will be hellishly difficult to implement. This stems from a fundamental that cannot be short-circuited or evaded: no matter how many experiments are performed on mice or even primates, humans have enough unique characteristics that optimization will require people.

Contrary to the usual supposition that the rich will be the first to cross the transhuman threshold, it is virtually certain that the frontline will consist of the desperate and the disenfranchised: the terminally ill, the poor, prisoners and soldiers – the same people who now try new chemotherapy or immunosuppression drugs, donate ova, become surrogate mothers, “agree” to undergo chemical castration or sleep deprivation. Yet another pool of early starfarers will be those whose beliefs require isolation to practice, whether they be Raëlians or fundamentalist monotheists – just as the Puritans had to brave the wilderness and brutal winters of Massachusetts to set up their Shining (though inevitably tarnished) City on the Hill.

So the first generation of humans adjusted to starship living are far likelier to resemble Peter Watts’ marginalized Rifters or Jay Lake’s rabid Armoricans, rather than the universe-striding, empowered citizens of Iain Banks’ Culture. Such methods and outcomes will not reassure anyone, regardless of her/his position on the political spectrum, who considers augmentation hubristic, dehumanizing, or a threat to human identity, equality or morality. The slightly less fraught idea of uploading individuals into (ostensibly) more durable non-carbon frames is not achievable, because minds are inseparable from the neurons that create them. Even if technological advances eventually enable synapse-by synapse reconstructions, the results will be not transfers but copies.

Yet no matter how palatable the methods and outcomes are, it seems to me that changes to humans will be inevitable if we ever want to go beyond the orbit of Pluto within one lifetime. Successful implementation of transhumanist techniques will help overcome the immense distances and inhospitable conditions of the journey. The undertaking will also bring about something that transhumanists – not to mention naysayers – tend to dread as a danger: speciation. Any significant changes to human physiology (whether genetic or epigenetic) will change the thought/emotion processes of those altered, which will in turn modify their cultural responses, including mating preferences and kinship patterns. Furthermore, long space journeys will recreate isolated breeding pools with divergent technology and social mores (as discussed in Making Aliens 4, 5 and 6).

On earth, all “separate but equal” doctrines have wrought untold misery and injustice, whether those segregated are genders in countries practicing Sharia, races in the American or African South, or the underprivileged in any nation that lacks decent health policies, adequate wages and humane laws. Speciation of humanity on earth bids fair to replicate this pattern, with the ancestral species (us) becoming slaves, food, zoo specimens or practice targets to our evolved progeny, Neanderthals to their Cro-Magnons, Eloi to their Morlocks. On the other hand, speciation in space may well be a requirement for success. Generation of variants makes it likelier that at least one of our many future permutations will pass the stringent tests of space travel and alight on another habitable planet.

Despite their honorable intentions and progressive outlook, if the transhumanists insist on first establishing a utopia on earth before approving spacefaring, they will achieve either nothing or a dystopia as bleak as that depicted in Paolo Bacigalupi’s unsparing stories. If they join forces with the space enthusiasts, they stand a chance to bring humanity through the Singularity some of them so fervently predict and expect – except it may be a Plurality of sapiens species and inhabited worlds instead.

]]>
https://spanish.lifeboat.com/blog/2008/03/dreamers-of-a-better-future-unite/feed 4